先物の価格形成 / Futures Price Formation

信用取引との差異 / Difference from Margin Tradingで説明したように、先物市場の価格は現物市場/Spot marketの価格とは異なります。ここでは、先物価格がどのように決まるかを説明します。
先物価格は、現物価格/Sport pricesを基準として決定される。これは、先物価格が、満期/Expiration dateを迎えるとスポット価格に収束するためである。
日経225先物などの指数先物は、満期になると、毎月第2金曜日の日経平均株価の構成銘柄の始値をもとに算出される特別気配(Special Quotation: SQ)で現物決済される。つまり、先物価格はスポット価格と密接に結びついているのである。
しかし、これだけでは先物価格を決定することはできません。先物の価格決定メカニズムをより深く知るためには、計算によって得られる理論上の価格であって、実際の価格ではない「先物理論価格/Theoretical futures price」を理解することが重要である。先物理論価格の算出に影響を与える主な要因は、短期金利/Short-term interest ratesと配当金/Dividendsです。次の例で見てみましょう。

(1) AさんとBさんはZ社の株を1,000株買いたいと思っている。Z社は現物市場と先物市場の両方で取引されている。AさんもBさんも今日購入する資金はないが、3ヶ月後には資金を確保できる見込みである。Z社の株のスポット価格と先物価格は次のとおりである。スポット スポット:2,000円 先物:3ヶ月後:2,020円。2,020円 ここで,各人が次のように購入すると仮定する。Aさんは,6%の金利でお金を借りて,今日,現金で株を購入する。Bさんは、今日Z社株先物を買い、3ヶ月後に現物株を買うように手配する。
(2) 1 ヶ月後に Z 社は 3 円の配当を支払う。Aさんは3円×1,000株=3,000円の配当を受け取る Bさんは無配当(Z社の株をまだ持っていないため)。
(3)3ヵ月後、先物取引の満期が到来し、両者とも期待通りの資金を手にする。Aさんは借入金と利息の合計203万円を返済。2,000円×1,000株×(1+0.06×3/12)=2,030,000円 BさんはZ社の株を1,000株、先物取引価格2,020,000円で購入した。2,020円×1,000株=2,020,000円。

しかし、この結果はどうでしょうか。Z社株式の購入方法を除けば、AさんもBさんも同じ条件でスタートしたことになります。しかし、まったく同じ株式を購入するために、Aさんは配当金3,000円を引いた2,030,000円を使い、Bさんは2,020,000円を使いました。Bさんは上記(1)でスポット価格より高い価格で先物を購入し、Aさんだけが上記(2)で配当金を受け取っています。つまり、この場合、借金をして株式を購入するのではなく、先物を購入した方が得策だったのです。
仮に、AさんとBさんがZ社の株を買う資金を持っていて、Aさんはすぐに買い、Bさんは先物を買い、契約期間満了まで6%の金利(使わなかった分)を得たとすると、二人の相対的な損益は上記のようになります。
つまり、次の式で与えられる金額だけ先物価格がスポット価格を上回り、バランスが取れることが期待できる。

なお、上記計算式の2番目の「今、現物を取得した場合に得られる所得」とは、株式の場合は配当、債券の場合は期間中の利息を指し、商品(貴金属や農産物など)には当てはまりません。上記の例のステージ(1)では、Z社株式のスポット価格2,000円と先物価格2,027円が均衡している。この価格均衡の状態を理論先物価格という。実際の先物価格は2,020円なので、理論先物価格はスポット価格より低い。の式で示される価格は、現物を所有するためのコストであり、"ベーシス “とも呼ばれるキャリーコストと呼ばれるものである。先物価格は次の式で表されます。

先物価格=スポット価格+キャリーコスト

配当利回りが短期金利より低い場合、キャリーコストは正の数になります。一方、配当利回りが短期金利よりも高ければ、キャリーコストはマイナスになる。このため、前者の場合、先物価格はスポット価格より高くなる(あるいは先物がプレミアムで売れる)。
後者の場合、先物価格はスポット価格より低くなる(あるいはディスカウントして販売される)。実際の先物取引では、取引コストや市場参加者の需給関係など、複雑な関係で価格が決定される。したがって、これらの問題をαと定義すると、先物価格の総和は次のようになる。先物価格=スポット価格+キャリーコスト+α